INCH-POUND

MIL-S-19500/598 11 December 1991

MILITARY SPECIFICATION

SEMICONDUCTOR DEVICE, QUAD, FIELD EFFECT TRANSISTOR, P-CHANNEL, AND N-CHANNEL, SILICON TYPE 2N7336, JANTX, JANTXV, AND JANS

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for quad N-channel and P-channel, enhancement-mode, MOSFET, power transistor intended for use in high density power switching applications. Three levels of product assurance are provided for each device type as specified in MIL-S-19500, with avalanche energy ratings (E_{AS} and E_{AR}) and maximum avalanche current (I_{AR}).
 - 1.2 Physical dimensions. See figure 1 (MOQ3-6AB).
 - 1.3 Maximum ratings ($T_A = +25^{\circ}C$, unless otherwise specified).

Туре	P _T T _A = +25°C (free air)	V _{GS}	I _{D1} <u>2</u> / T _C = +25°C		T _C	22 <u>2</u> / +100°c	I _s	
	ñ	V dc	A dc		A dc		A dc	
		1	N-channel	P-channel	N-channel	P-channel	N-channel	P-channel
2N7336	1.4	±20	1.0	75	.6	.5	1.0	75

EAS	E _{AR}	¹ AR	<u>2</u> /	į i		op and		Max r _{DS} (c			R _{OJA1} maximum 1 die	R _{eJA2} maximum 4 die
mJ	mJ		4	A (į	ok)	_ <u>°C</u>	T _J =	+25°C	T _J = -	+150°C	<u>°C/W</u>	<u>°c/u</u>
75	. 14		P-channel 75	N-channel	 P-channel -3.0	 - 5 5 to +150	0.7	P-channel	N-channel	P-channel	90	50

See footnotes on next page.

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Electronics Supply Center, ATTN: DESC-ECT, 1507 Wilmington Pike, Dayton, OH 45444-5280, using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A <u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

FSC 5961

- 1.3 Maximum ratings $(T_A = +25^{\circ}C, \text{ unless otherwise specified})$ Continued.
- $\underline{1}/$ Denate linearly 1.2 W/°C for $T_C > +25$ °C.

$$P_{T} = \frac{T_{J} \max - T_{C}}{R_{ELC}}$$

$$\frac{2}{I_D} = \sqrt{\frac{T_J \max - T_C}{(R_{\Theta JA}) \times (R_{DS(on)} \text{ at } T_J \max)}}$$

- $\underline{3}/$ $I_{DM} = 4$ I_{D1} ; I_{D1} as calculated in footnote 2.
- 1.4 Primary electrical characteristics at $T_C = +25$ °C.

Туре	Min $V_{(BR)DSS}$ $V_{GS} = 0 V$ $I_D = 1 \text{ mA dc}$	$V_{GS(th)1}$ $V_{DS} \ge V_{GS}$ $I_D = 0.25 \text{ mA}$	Max I _{DSS1} V _{GS} = 0 V	Max r _{DS(c} V _{GS} = 10 I _D = 1) V dc
			V _{DS} = 80% of rated V _{DS}	T _J = 4	-25°C
	V dc	V dc	<u>μ</u> A dc	ohr I	ns
		Min Max		N-channel	P-channel
2N7336	 100 	2.0 4.0	25	0.7	1.4

1/ Pulsed (see 4.5.1).

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications</u>, <u>standards</u>, <u>and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation (see 6.2).

SPECIFICATION

MILITARY

MIL-S-19500 - Semiconductor Devices, General Specification for.

STANDARD

MILITARY

MIL-STD-750 - Test Methods for Semiconductor Devices.

(Unless otherwise indicated, copies of federal and military specifications, standards, and handbooks are available from the Standardization Documents Order Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.)

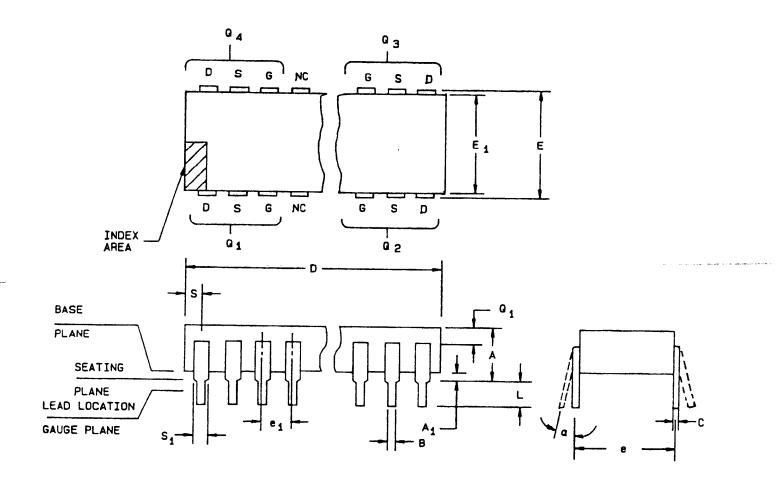


FIGURE 1. <u>Dimensions and configuration (MO-Q36AB)</u>.

Min Max Min Max A 2.67 4.44 .105 .175 1	1 1 1
A 2.67 4.44 .105 .175 1 A1 .64 1.39 .025 .055 1 B .381 .533 .015 .021 B1 .97 1.52 .038 .060 C .204 .304 .008 .012 D 17.53 19.55 .690 .770	
A1 .64 1.39 .025 .055 1 B .381 .533 .015 .021 B1 .97 1.52 .038 .060 C .204 .304 .008 .012 D 17.53 19.55 .690 .770	
B .381 .533 .015 .021 B ₁ .97 1.52 .038 .060 C .204 .304 .008 .012 D 17.53 19.55 .690 .770	1
B ₁ .97 1.52 .038 .060 c .204 .304 .008 .012 D 17.53 19.55 .690 .770	
c .204 .304 .008 .012 D 17.53 19.55 .690 .770	
D 17.53 19.55 .690 .770	
E 7.37 8.25 .290 .325	
	i
E ₁ 7.12 7.87 .280 .310 1	0
e ₁ 2.54 TP .100 TP 5,	6
e _A 7.62 TP .300 TP 5,	6
L 3.18 4.44 .125 .175 1	1
L ₂ .00 .76 .000 .030	
α 0° 15° 0° 15°	7
N 14 14	8
Q ₁ .25010	
S .77 2.41 .030 .095	

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Refer to applicable symbol list.
- 4. Dimensioning and tolerancing in accordance with ANSI, Y14.5-1973.
- Leads within 0.13 mm (.005 inch) radius of true position (TP) at gauge plane with maximum material
 condition and unit installed.
- 6. e₁ and e_A applies in zone L₂ when unit installed.
- 7. α applies to spread leads prior to installation.
- 8. N is the number of terminal positions.
- 9. Outlines on which the seating plane is coincident with the base plane ($A_1 = 0$), terminals lead standoffs are not required, and B_1 may equal B along any part of the lead above the seating/base plane.
- 10. E₁ does not include particles of package materials.
- This dimension shall be measured with the device seated in the seating plane gauge JEDEC outline No. GS-3.
- 12. Controlling dimension: Inch.
- 13. Q_1 and Q_3 are N-channel, Q_2 and Q_4 are P-channel.

FIGURE 1. <u>Dimensions and configuration (MO-Q36AB)</u> - Continued.

2.2 Order of precedence. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Detail specification</u>. The individual item requirements shall be in accordance with MIL-S-19500, and as specified herein.
- 3.2 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-S-19500.
- 3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-S-19500, and figure 1 herein.
- 3.3.1 <u>Lead formation material and finish</u>. Lead finish shall be solderable in accordance with MIL-STD-750, MIL-S-19500, and herein. Where a choice of lead material or finish is desired, it shall be specified in the contract or purchase order (see 6.5).
- 3.4 Marking. Marking shall be in accordance with MIL-S-19500.
- 3.5 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic protection.
- 3.5.1 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of electrostatic charge. The following handling practices shall be followed.
 - a. Devices shall be handled on benches with conductive handling devices.
 - b. Ground test equipment, tools, and personnel handling devices.
 - c. Do not handle devices by the leads.
 - d. Store devices in conductive foam or carriers.
 - e. Avoid use of plastic, rubber, or silk in MOS areas.
 - f. Maintain relative humidity above 50 percent if practical.
 - g. Care shall be exercised, during test and troubleshooting, to apply not more than maximum rated voltage to any lead.
 - h. Gate must be terminated to source, $R \le 100$ k, whenever bias voltage is to be applied drain to source.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection shall be in accordance with MIL-S-19500, and as specified herein.
- 4.2 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-S-19500, and as specified herein. Alternate flow is allowed for qualification inspection in accordance with figure 2 of MIL-S-19500.
- 4.2.1 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with MIL-S-19500, and table IV herein.

4.3 Screening (JANS, JANTX, and JANTXV levels only). Screening shall be in accordance with MIL-S-19500 (table II), and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see	Measurement Measurement	
table II of MIL-S-19500)	JANS level	JANTX and JANTXV levels
1/2/		Gate stress test (see 4.5.5)
1/ 2/		Method 3470 (see 4.5.4)
1/	Method 3161 (see 4.5.3)	 Method 3161 (see 4.5.3)
9	I _{GSS1} , I _{DSS1} , subgroup 2 of table I herein	Subgroup 2 of table I herein
10	 Method 1042, test condition B	
11	I _{GSS1} , I _{DSS1} , r _{DS} (on)1, V _{GS} (th)1 Subgroup 2 of table I herein;	IGSS1' IDSS1' IDS(on)1' VGS(th)1' subgroup 2 of table I herein
	ΔI _{GSS1} = ±20 nA dc or ±100% of initial value, whichever is greater	
	ΔI _{DSS1} = ±25 μA dc or ±100% of initial value, whichever is greater	
12	 Method 1042, test condition A, t = 240 hours	Method 1042, test condition A
13	 Subgroups 2 and 3 of table I herein;	
	ΔI _{GSS1} = ±20 nA dc or ±100% of initial value, whichever is greater	AI _{GSS1} = ±20 nA dc or ±100% of initial value, whichever is greater
	$\Delta I_{DSS1} = \pm 25 \mu A$ dc or $\pm 100\%$ of initial value, whichever is greater	$\Delta I_{DSS1} = \pm 25 \mu\text{A}$ dc or $\pm 100\%$ of initial value, whichever is greater
	$\Delta r_{DS(on)1} = \pm 20\%$ of initial value $\Delta v_{GS(th)1} = \pm 20\%$ of initial value	$\Delta r_{\text{DS}(\text{on})1} = \pm 20\%$ of initial value $\Delta v_{\text{GS}(\text{th})1} = \pm 20\%$ of initial value

 $[\]underline{1}/$ Shall be performed anytime before screen 10.

^{2/} This is a stress test designed to insure a rugged product.

- 4.4 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with MIL-S-19500, and as specified herein. Alternate flow is allowed for quality conformance inspection in accordance with figure 2 of MIL-S-19500.
- 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with MIL-S-19500, and table I herein. (End-point electrical measurements shall be in accordance with the applicable steps of table V herein.)
- 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table IVa (JANS) and table IVb (JANTX and JANTXV) of MIL-S-19500, and tables IIA and IIB herein. Electrical measurements (end points) and delta requirements shall be in accordance with the applicable steps of table V herein.
- 4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table V of MIL-S-19500, and table III herein. Electrical measurements (end points) and delta requirements shall be in accordance with the applicable steps of table V herein.
- 4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified in the appropriate tables and as follows.
- 4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurement shall be as specified in section 4 of HIL-STD-750.
- 4.5.2 <u>Thermal resistance</u>. Thermal resistance measurements shall be performed in accordance with method 3161 of MIL-STD- $\overline{750}$. $R_{\Theta JA1}$ maximum = 90° C/W. $R_{\Theta JA1}$ shall be performed on each die.
 - a. I_m measuring current - - 10 mA
 - b. I_H drain heating current - - 0.15 A
 - c. t_H heating time ----- Steady-state (see method 3161 of MIL-STD-750, for definition)
 - d. V_H drain-source heating voltage - 15 V
 - e. t_{MD} measurement time delay - - 30 to 60 μs
 - f. t_{SU} sample window time - - 10 μ s maximum
- 4.5.3 Thermal response (ΔV_{SD} measurements). The delta V_{SD} measurements shall be performed in accordance

with method 3161 of MIL-STD-750. The delta V_{SD} conditions (I_H and V_H) and maximum limit shall be derived by each vendor from the thermal response curves (see figure 3). The delta V_{SD} measurement and conditions for each device in the qualification lot shall be submitted (read and record) in the qualification report. The chosen delta V_{SD} shall be considered final after the manufacturer has had the opportunity to test five consecutive lots. The following parameter measurements shall apply:

- a. $I_{\rm M}$ measuring current - - 10 mA
- b. I_H drain heating current - - 0.15 A minimum
- c. t_H heating time ---- 100 ms
- d. V_H drain-source heating voltage - 15 V minimum
- e. t_{MD} measurement time delay - - 30 to 60 μs
- f. t_{su} sample window time - - 10 μ s maximum

TABLE I. Group A inspection.

Inspection 1/	<u> </u>	MIL-STD-750	Symbol	Lim	Unit	
	Method	Conditions	 	Min	Max	
Subgroup 1 Visual and mechanical inspection	2071					
Subgroup 2			1			
Breakdown voltage, drain to source	3407	V _{GS} = 0 V dc I _D = 1 mA dc Condition C.	V(BR)DSS	100		V dc
Gate to source voltage (threshold)	3404	$ \begin{vmatrix} V_{DS} \ge V_{GS} \\ V_{D} = 0.25 \text{ mA dc.} \end{vmatrix} $	V _{GS} (th)1	2.0	4.0	V dc
Gate current	3411	$ V_{GS} = +20 \text{ V dc}$ and -20 V dc Blas condition C $ V_{DS} = 0$.	I _{GSS1}		±100	nA dc
Drain current	3413	V _{GS} = 0 V dc V _{DS} = 80% of rated V _{DS} Bias condition C.	I _{DSS1}		25	μA dc
 Static drain to source on-state resistance	3421	$V_{GS} = 10 \text{ V dc}$ $Pulsed$ (see 4.5.1) $CONDITION A$, $I_D = rated$ I_{D2} (see 1.3).				Ω
N-channel P-channel					0.7	
 Forward voltage (source drain diode)	4011	Pulsed (see 4.5.1) $V_{GS} = 0 \text{ V}, I_D = I_{D1}.$	VSD			i v
N-channel P-channel				1	1.5	1
Subgroup 3				i	i	1
 High temperature operation	1	T _C = T _J = +125°C				
Gate current	3411	Bias condition C $V_{GS} = +20 \text{ V dc}$ and -20 V dc $V_{DS} = 0 \text{ V dc}$.	I _{GSS2}		±200	nA dc
Drain current	3413	Bias condition C $ V_{GS} = 0 \text{ V dc}$ $ V_{DS} = 100\% \text{ of rated } V_{DS}$ $ V_{DS} = 80\% \text{ of rated } V_{DS}$.	IDSS2		1.0	mA dc

See footnote at end of table.

TABLE I. Group A inspection - Continued.

	MVI 5TD 750		Symbol	Lim	Unit	
Inspection 1/		MIL-STD-750		Min	Max	
Static drain to source on-state resistance	Method 3421	Conditions V _{GS} = 10 V dc Pulsed (see 4.5.1) I _D = rated I _{D2} .	rps(on)3		1.4	Ω
N-channel P-channel Gate to source	3404	 	V _{GS} (th)2	1.0	2.3	V dc
voltage (threshold)	\ \ \ \	$ T_{C}^{-}=0.25 \text{ mA oc.}$ $ T_{C}^{-}=T_{J}^{-}=-55^{\circ}\text{C.}$				
ow temperature operation Gate to source voltage (threshold)	3403	$ V_{DS} \ge V_{GS}$ $ I_{D} = 0.25$ mA dc.	Y _{GS(th)} 3		5.0	V dc
Subgroup 4 Switching time test	3472	$I_{D} = \text{rated } I_{D1}$ $ V_{D} = .5 V_{BR(DSS)}$ $ V_{GS} = 10 V dc$ $ R_{g} = 24\Omega$				
Turn-on delay time		ng	t _d (on)		20	ns
N-channel P-channel			 t _r			l ns
Rise time	1		1		25 60	
N-channel P-channel					40	i I ns
Turn-off delay time	:		td(off)		İ	ns
Fall time			\tag{\tau_{\frac{1}{2}}}	İ	40	
N-channel P-channel	<u> </u>			 	60 	
Subgroup 5	İ	any s aread V				
Safe operating area test	34°	tp = 10 ms	(055)			
N-channel P-channel		$I_D = 0.25 \text{ A}$ $I_D = 0.05 \text{ A}$	ens.			\ \ \ \
 Electrical measurements		See table V herein ste 1, 2, 3, 4, 5, 6, an	nd 7.	1	1	

TABLE I. Group A inspection - Continued.

Inspection 1/	Inspection 1/ MIL-STD-750		Symbol	Liji	mits	Unit
	 Method	Conditions		Min	 Nax	
Subgroup 6	<u> </u> 				<u> </u>	
 Not applicable	 					
Subgroup 7	 	 			1 [•
 Gate charge	3471	 Condition B				
On-state gate charge	l i		 [©] g(on)	[15	nC
Gate to source charge	 		Qgs		 	nC
N-channel	İ	 	l as	<u> </u>	7.5	
P-channel	İ		İ	İ	7.0	<u> </u>
Gate to drain charge		1	o _{gd}	; 	1	nC
N-channel P-channel	! 			 	7.5 8.0	
Reverse recovery time	 3473 	 di/dt = 100 A/µs V _{DD} ≤ 30 V dc I _D = I _{D1} .	trr		200	ns
	1				1	<u> </u>

^{1/} For sampling plan, see MIL-S-19500.

TABLE IIA. Group B inspection for JANS device.

		
Inspection 1/		MIL-STD-750
	Method	Conditions
Subgroup 1		
Physical dimensions	2066	See figure 1.
Subgroup 2 2/		
 Solderability	2026	
Resistance to solvents	1022	
Subgroup 3		
Temperature cycling	1051	Test condition G.
 Hermetic seal	1071	
Fine leak Gross leak		
 Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, 6, and 7.
 Decap internal visual (design verification)	2075	See 3.3.2.
SEM	2077	
 Bond strength (wire or clip bonded) 	2037	Test condition A: All internal wires for each device shall be pulled separately.
 Die shear strength	2017	
Subgroup 4		
 Not applicable		

See footnotes at end of table.

TABLE IIA. Group B inspection for JANS device - Continued.

Inspection 1/		MIL-STD-750
	Method	Conditions
Subgroup 5 2/]
Accelerated steady state reverse bias	1042	Condition A, V_{DS} = rated T_A = +175°C, t = 120 hours Read and record $V_{BR(DSS)}$ (pre and post) at I_D = 1 mA. Read and record I_{DSS} (pre and post), in accordance with table V.
Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, and 6. No more than 15% of the sample shall be permitted to have a $\Delta V_{BR(DSS)}$ shift of more than 10% and ΔI_{DSS} greater than 50 μ A.
 Accelerated steady state gate stress 	1042	Condition B, V _{GS} = rated T _A = +175°C, t = 24 hours.
 Electrical measurements		
Bond strength (Al-Au die interconnects only)	2037	Test condition A.
Subgroup 6		
Thermal impedance	3161	See 4.5.2.

and definitions used herein shall

 $[\]frac{1}{2}$ / For sampling plan, see MIL-S-19500. A separate sample may be pulled for each test.

TABLE IIB. Group B inspection for JANTX and JANTXV.

Inspection 1/	MIL-STD-750				
	Method	Conditions			
Subgroup 1 2/					
Solderability	2026				
Resistance to solvents	1022				
Subgroup 2	 				
Temperature cycling	1051	Condition G.			
Hermetic seal	1071				
Fine leak Gross leak					
Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, 6, and 7.			
Subgroup 3 2/		90% of rated			
Steady state reverse bias	1042	Condition A, $V_{DS} = 80\%$ of rated $T_A = +150$ °C, $t = 160$ hours.			
 Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, and 6.			
 Steady state gate stress	1042	Condition B, $V_{GS} = 80\%$ of rates $T_A = +150^{\circ}\text{C}$, $t = 24$ hours.			
 Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, and 6.			
	2037	Test condition A.			
Subgroup 4					
	2075				
Subgroups 5 and 6	İ				
Not applicable		İ			

 $[\]frac{1}{2}$ For sampling plan, see MIL-S-19500. $\frac{2}{2}$ A separate sample may be pulled for each test.

TABLE III. Group C inspection (all quality levels).

1	· · · · · · · · · · · · · · · · · · ·	
Inspection <u>1</u> /		MIL-STD-750
	Method	Conditions
Subgroup 1		
Physical dimensions	2066	 See figure 1.
Subgroup 2		
Thermal shock (glass strain)	1056	Condition A.
Terminal strength (tension)	2036	Test condition A: Weight = 10 pounds t = 15 seconds.
 Hermetic seal	1071	
Fine leak Gross leak		
 Moisture resistance	1021	
Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, 6, and 7.
Subgroup 3		
Shock	2016	
Vibration, variable frequency	2056	
Constant acceleration	2006	
Electrical measurements		See table V herein, steps 1, 2, 3, 4, 5, and 6.
Subgroup 4		
 Salt atmosphere	1041	
Subgroup 5		
 Not applicable 		

See footnote at end of table.

TABLE III. Group C inspection (all quality levels).

Inspection <u>1</u> /	MIL-STD-750		
	Method	Conditions	
Subgroup 6			
 Steady state reverse bias	1042	Condition A, $V_{DS} = 80\%$ of rated $T_A = +150$ °C, $t = 340$ hours.	
 Electrical measurements 		See table V herein, steps 1, 2, 3, 4, 5, and 6.	
 Steady state gate stress	1042	Condition B, V _{GS} = 80% of rated T _A = +150°C, t = 24 hours.	
 Electrical measurements	! !	See table V herein, steps 1, 2, 3, 4, 5, and 6.	
Bond strength	2037		

^{1/} For sampling plan, see MIL-S-19500. 2/ A separate sample may be pulled for each test.

TABLE IV. Group E inspection (all quality levels) for qualification only.

		Qualification		
Inspection	Method	Conditions	and large lot quality conformance inspection	
Subgroup 1 	 1051	 - Test condition G, 500 cycles.	45 devices c = 1	
 Hermetic seal	(0)	l		
 a. Fine leak b. Gross leak	 			
 Electrical measurements 	! 			
Subgroup 2 1/	 		45 devices c = 1	
	 1042 		6-1	
 Electrical measurements 	 			
 Steady-state gate bias	1042			
 Electrical measurements 	[See table V herein, steps 1, 2, 3, 4, 5, and 6.		
Subgroup 3			3 devices	
 Destructive physical analysis (DPA)	 2102 		c = 0	
Subgroup 4	1] 	5 devices	
 Thermal resistance] 3161 	 R _{eJA1} = 90°C/W maximum. See 4.5.2.	6 = 0	
Subgroup 5	ł !	 		
 Not applicable	!			

 $[\]underline{1}/$ A separate sample for each test may be pulled.

TABLE V. Group A, B, C, and E electrical end-point measurements.

Step	Inspection	MIL-STD-750		Symbol	Limits		! ∐ Unit
	<u> </u>	Method	Conditions		Min	Max	<u> </u>
1.	 Breakdown voltage drain to source	3407	$V_{GS} = 0$ V $I_{D} = 1.0$ mA dc Bias condition C.	V(BR)DSS	100	 	V dc
2.	 Gate to source voltage (threshold)	3404	V _{DS} ≥ V _{GS} I _D = 0.25 mA dc.	V _{GS(th)1}	2.0	4.0	V dc
3.	Gate current	3411	$V_{GS} = \pm 20 \text{ V dc}$ bias condition C.	I _{GSS1}		±100	nA dc
4.	 Drain current 	3413	V _{GS} = 0, V _{DS} = 80% of rated V _{DS} bias condition C.	I _{DSS1}		25	μA dc
5.	Static drain to source on-state resistance	 3421 	 V _{GS} = 10 V dc Condition A Pulsed (see 4.5.1) I _D = I _D 2	^C DS(on)1			Ω
	N-channel P-channel					0.7	
6.	Forward voltage (source-drain diode)	4011	Pulsed (see 4.5.1) V _G = 0 V I _D = I _{D1}	V _{SD}			V
	N-channel P-channel		 			1.5	
7.	Thermal response	3161	See 4.5.3	ΔV _{SD}			

4.5.4 Single pulse avalanche energy $E_{\mbox{\scriptsize AS}}$.

c. Gate to source resistor,
$$R_{GS} = - - 25 \le R_{GS} \le 200\Omega$$

e. Inductance - - - - - - -
$$\left[2E_{AS}/(I_{D1})^2 \right] \left[\frac{(V_{BR} - V_{DD})}{V_{BR}} \right]$$
 mH minimum

4.5.5 Gate stress test.

a.
$$V_{GS} = 30 \text{ V minimum}$$
.

b.
$$t = 250 \mu s minimum$$
.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-S-19500.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory).

- 6.1 Notes. The notes specified in MIL-S-19500 are applicable to this specification.
- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Issue of DODISS to be cited in the solicitation, and if required, the specific issue of individual documents referenced (see 2.1).
 - c. Lead formation material and finish may be specified (see 3.3.1).
- 6.3 <u>Substitution information</u>. Devices covered by this specification are substitutable for the manufacturers' and users' part number. This information in no way implies that manufacturers' part numbers are suitable as a substitute for the military Part or Identifying Number (PIN).

Military PIN	Manufacturers' CAGE code	
2N7336	59993	IRFG91

CONCLUDING MATERIAL

Custodians:

Army - ER Navy - EC Air Force - 17 NASA - NA

Review activities: Navy - AR, M1 Air Force - 19, 85, 99

DLA - ES

User activity:

Army - SM Navy - AS, CG, MC, OS Air Force - 13

Preparing activity:

Navy - EC

Agent: DLA - ES

(Project 5961-1302)

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

The preparing activity must complete blocks 1, 2, 3, and 8 In block 1, both the document number and revision letter should be given.

- 2. The submitter of this form must complete blocks 4, 5, 6, and 7.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

1. DOCUMENT NUMBER	2. DOCUMENT DATE (YYMMDD)
I RECOMMEND A CHANGE:	1991 December 11
	ield Effect Transistor, P-channel, and N-channel
S111con type 2N7336 JANTY JANTYV AND JANS NATURE OF CHANGE (Identify paragraph number and include prop	sosed rewrite, if possible. Attach extra sheets as needed.)
, RATURE OF CHARGE (OCITING POLICY PARTIES OF THE MICHOE PROP	
•	•
	and the control of th
REASON FOR RECOMMENDATION	
L SUBMITTER L NAME (Last, First, Middle Intol)	D. ORGANIZATION
: ADDRESS (include Zip Code):	d TELEPHONE (Include Area Code) 7. DATE SUBMITTED (YYMMOD)
	(I) Connecti
	(2) AUTOVON (If applicable)
. PREPARING ACTIVITY	
. NAME	b. TELEPHONE (Include Area Code)
Alan Barone	(1) Commercial (2) AUTOVON (513) 296-6048 (AV) 986-6048
	(515/270 0070
ADDRESS (Include Zip Code)	IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:
DESC-ECT	Defense Quality and Standardization Office 5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466
Dayton, Ohio 45444-5280	Telephone (703) 756-2340 AUTOVON 289-2340
Source: https://acciet.dla.mil. Dr	ownloaded: 2016-12-04T20:037